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ABSTRACT 

The consistency of the Adler-Weisberger sum rule in the large-N.expansion 

is examined. It is shown that the A saturates the sum rule in the nonrelativistic 

quark model to all orders in $, and in the Skyrme model to leading order in 

h. Phenomenologically, it is evident that either CJ~ or the integral over the 

difference of rp total cross sections appearing in the sum rule is poorly behaved 

a.5 an expansion in &. In the Skyrme model, baaed on the calculation of the 

A contribution to the sum rule it appears that it is SA itself which has large 

higher-order corrections. It seems likely that in a direct calculation of CJ~ it is 

necessary to include the first two subleading orders before an accurate result for 

SA can be obtained. 
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One of the most serious phenomenological problems with the Skyrme model is 

its prediction for g,~, = .61,’ about a factor of 2 less than the measured value. On 

the other hand, one notable success of the theory of chiral symmetry breaking 

is the Adler- Weisberger (A-W) sum rule* which accurately relates go to total 

n-proton scattering cross sections. 

(1) 

Here v = e where p (q) is the proton (pion) momentum, and I+ = m, + 

d 2m,. As one expects on the basis of the quark model, the dominant contribution 

experimentally to the integral is from the A. Simple isospin relations dictate that 

the A++ contribution is three times that of the AD. Therefore, it is surprising at 

first glance to see a calculation of gA that is less than 1 in a model which both 

incorporates the spontaneous breaking of chiral symmetry and describes to some 

degree the A. 

A partial resolution to the problem is that the Skyrme model predictions are 

to be interpreted in large N. By explicit evaluation in the Skyrme model, go 

is O(N). The term 1 on the right-hand side of eqn.(l) is not present then in a 

leading order evaluation of the sum rule. However, Jf is O(N) and generically 

urn is 0 (1)3 Thus, one is led to the more basic question of how the sum rule is 

consistent in large N. The A will play a central part in the following discussion. 

In order to make clear the special role it has in the large-N limit, it is convenient 

to review briefly a derivation of the sum rule. 

2 



The derivation’ sketched here begins with the identity 

J d’zd’y e iL-ze-iq’y{koqP (~‘1 T[A,f(z)A;(y)j ip) 

- (~‘1 TIa”Aii(zPPAp(~)l IP) - 6(2” -Y’) (~‘1 &(Y),PA,+(z)] IP) (2) 

-iq’+’ - Y’) (~‘1 [A,+(z),Aj(y)] IP,} = 0. 

It is to be analyzed in the soft pion limit, q2 and kZ = 0. We will remove 

single pion poles from A, and PA,, denoting them by & and 3 afterwards. 

Eqn.(2) gives several equations obtained’ by setting the collection of terms with 

the same pole structure in & and & . to zero. The third term in eqn.(2), 

a o -term, is small and can be dropped, as can matrix elements of a The terms 

which are proportional to (k.-n&Gn:) cancel. The information contained in 

the terms with single poles can be used to simplify the equation for the non- 

pole terms. Afterwards, it is convenient to cancel an overall &momentum delta 

function, and then set p’ = p. The contribution of the fourth term in eqn.(2) is 

normalized to 0 (v”) by the isospin of the proton. The non-pole terms assemble 

to give 

qQqP J d’z ,+z (PI WI;:(4Aj(O)I IP) + ifiT-(4q2 = 0) 
(3) 

= constant + im,v + 0(v2) 

where T-(v,q’) = (pr-(q)I Tipx-(q)) is th e r-p T matrix element. The A-W 

sum rule follows from the terms of eqn(3) linear in v, so that the constant in 

eqn.(3) is irrelevant. 

The usual derivation of eqn.(l) from eqn.(3) proceeds in two steps. To begin 

with, the neutron pole is extracted from the first term of the left-hand side of 



eqn. (3) with the result 

qQqP 
I 

d”= ,e (PI ~l.-c(4~p(o~l IP) lne”trO” r&= i&?$ (41 

where Y, = w. Note that there is an apparent sensitivity to the neutron- , 

proton mass difference; if Y, = 0 there is a term in eqn(4) linear in Y, otherwise 

there is not. The result of the full calculation should not have this feature. 

Secondly, a dispersive treatment is given for T-(v,q* z 0) at small Y. In the real 

world m, # 0 and the A is a resonance in the continuum. Taking into account 

the neutron pole at v,, 

2’ ’ : 
T-f% n2) = - S&N 

(mn4znp)* ” ““U” 

+ ? ~dytprq;;~~) + -+J. (5) 
Y. 

Eqn.‘s(4) and (5) are to be substituted into eqn(3). As expected, the neutron 

pole terms assemble to a quantity which is insensitive to v”. 

mpu2 
is;---.- - 

Y - U” 
(‘3) 

where the Goldberger-Treiman relation has been used. Eqn.(l) follows from 

eqn.(3) directly upon combining eqn.‘s (4), (5), and (6). 

The discussion of the sum rule at large N is strongly infiuenced by the prop- 

erties of the A ss N -+ 00. The first consideration is that rnA - rnN - O(h) as 

can be seen either by calculating the color magnetic spin splitting’ in large N, or 

in the Skyrme model calculation. Using the results of ref.[l] it is straightforward 
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to show that T(A - xN) - O(h), if this decay mode of the A is kinemati- 

tally allowed. (Throughout the paper electroweak effects will be ignored. For 

example, we will not include the partial width !?(A -+ TN) in the full width. 

Therefore, if the decay A -+ rN is kinematically disallowed, the A is stable.) 

At this point, there are two simple alternatives to consider. The first is the ewe 

m, # 0, m. = md. The nucleon multiplet is degenerate ( V, = 0), as is the 

A multiplet. For sufficiently large N, rn~ - rn~ < m, because m, - O(1). 

Then the A is no longer a resonance in the continuum of rrp scattering, but is 

instead a pole below threshold, like the neutron. The second case is that when 

m, = rnd = m, = 0. Again vn = 0, and the A multiplet is degenerate. Here, 

though, the neutron is a pole at threshold in ~7 - p scattering , and the A is 

a narrow resonance, to leading order a pole, in the continuum. The case with 

m, # 0 is closer in spirit to the original case considered by Adler and Weis- 

berger, and will be investigated first. The second case will be discussed brielly 

afterwards. 

In the first situation the treatment of the neutron in the sum rule is un- 

changed; however, the A should now be treated on an equal footing with the 

neutron, not as a continuum resonance. In the two terms of the left-hand side 

of eqn.(3), the Aa (A+‘) contributes as an s (u) - channel pole. It should be 

remarked that in the nonrelativistic quark model (NRQM) in large N and in 

the Skyrme model there are I = J = i, g, ._. states nearly degenerate with the 

nucleon and A; they have the wrong isospin, though, to give pole contributions. 

It is convenient to evaluate the various terms involving the A when describ- 

ing the A by a massive Rarita - Schwinger spinor Ut$,, where p (o) is a vec- 

tor (Dirac) Lorentz index, and a (or) is an isospin vector (doublet) index. The 
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Dirac and isodoublet indices will be suppressed frequently. To project out the 

spin- and isospin-i states, the A spinor satisfies 

hJc&;:, = 0, (+,p,u:;;, = 0. (7) 

One quantity which will appear often is the nucleon -A matrix element of the 

axial vector current: 

N (P’,S’,I!) A:(O) l~,s,I)~ = ~(p’,s’,I’)[F(q*)g’: + G(q’)-y“q, 

+ H(qz)q”qv + ~~(q2)~~pqpqy]~“~0(p, s, I), 
(8) 

where p, s, and I (p’, s’, and I’) label the momentum, spin, and isospin of the A 

(nucleon), and q = p - p’. Using the Dirac equations for u and U, eqn.(7), and 

the P invariance of strong interactions, the four form factors above are a maximal 

set, and by time reversal invariance they are real. The x - N - A coupling will 

be taken to be 

=&%r’[(a,?j)w” + %“;“(a,+)], (9) 

where W‘;a ($) is the field of the A (nucleon). There is a Goldberger-Treiman 

relation. One finds in the usual way, 

(10) 

By naive counting F and G can grow at most like N as N + co, because the 

coupling of the current to any one quark is O(1). Explicitly, we will see in the 

NRQM and Skyrme model that F - 0 (N). Because mA - mN - 0 (h), to 

leading order in N the term G (mu - m,v) may be dropped in eqn.(lO). A final 



useful identity is that for the A propagator, 

(11) 

with 

Tab = (bab - ;Ta7b). 

Return to the analysis of eqn.(3), and evaluate the A-pole contributions. 

Both the A++ and the A0 give a one pole term to: the first term in eqn.(3). 

qaclp / d4zeiq’= (PIT[A:(+$(O)] IP) IA polc 

= ;ii(p)(F + Gh)q’A,,(p+ q)qyT;~i2~1-i2 (F - GMP) + [I i f,/;q- iz) 

( mA f mN)u’ + o(u3)](y yyA -- 3 . ) 
U+UA 

(13) 

where VA = miG,“C. There appears to be a noncommutivity in limits. For finite 

N as v -+ 0 there is no term linear in V, while when VA = 0 at infinite N there is. 

Again, one expects that the inclusion of the second term on the left-hand side of 

eqn.(3) will eliminate the sensitivity to the small mass difference. Eqn.(5) must 

be changed to include the A-pole contribution below threshold 

4 f&A mN(mA + ‘-“Nj2 f: T-(“,q2 - ‘1 IA po,.= 9 m”h ( “A--Y UA+v 1 (14) 

Only for finite N does eqn.(l4) have a term linear in V. With the appropriate 



Goldberger-Treiman relation, eqn.(lO), one has 

. 

{q”qP] dze”‘” (PIT[~:(z)xp(O)I IP) + ifi T-C&? = O)}A pole 

= COWStWIt - iimrJ[F + G (,,%A - V,N)12 
(mA + mNj2 4m2 v + O(v’) 

A 

In the limit N = cc when VA = 0, eqn.(l4) d oes not contain a term linear in Y. 

However, the term linear in v in eqn.(l5) matches that of eqn.(l3) in this same 

limit by the discussion following eqn.( 10). 

The modified Adler-Weisberger sum rule appropriate for N -t OO,~, # 0, 

and m, = rnd is obtained upon combining eqn.‘s (l),(2), and (15), 

gi ~1 + ;[F + G (VI,, - mN)]2(mA4+-:N)Z 

A 

+ 2f: md”mq - 
37 / 

(16) 

g [-+A4 - %-p(V)] 
“r 

Essentially the same result can be obtained in the limit m, = 0 by slighty 

different manipulations. Treating the A as a zer-width resonance, as is valid to 

leading order in $,,, from eqn.(g) 

Or-p-.&Q = &a(- “A) 
&AbA +mN12 

N 
18 

4 
(mZ, - m&J2 , 1 (17) 

where the term in brackets is the matrix-element squared evaluated at Y = VA. 

Using eqn.(lO) and isospin relations gives 

v.%+c 
2f,2 dv 

I -iTI 
b,+p-rA++(u)--O,-ptAo(V)] 

8 
x 

= glF+G(mA--mdl 
2 (mA + mN)2 

4m2, 
t.. 

“A--c 

(18) 

where there are additional corrections due to the finite width of the A. 



Assuming for the moment that F - 0 (N), it is rather clear at this point how 

one of the paradoxes presented in the introduction may be resolved. .Uthough 

Q,~(v) - in particular crrp-~(~) - is O(l), the A component is concentrated at 

“CevA- O(h). The A contribution to the sum rule is of order $ which 

is proportional to N’, as is gi. The fact that resonance contributions to the 

integral over the cross sections can be order 0 (N’) was pointed out by Kakuto 

and Toyodaf although apparently it was not appreciated that the A-nucleon 

mass difference is O(h), (or, ss will become clear, that the A alone appears to 

saturate the sum rule in leading order). 

There are two immediate issues to address in regards to this explanation of 

the consistency of the sum rule in large N. The first is to establish indeed that 

F - O(N), ( and review that go - O(N)). Th e second is whether or not the A 

saturates the sum rule in leading order; if it does not , then there should probably 

be other states with isospin i or i whose masses differ from rn~ by order h as 

well. Although definitive conclusions about these issues can not be reached, it is 

possible to examine them in models. Here, go and the A contribution to the sum 

rule will be evaluated in the NRQM, and the Skyrme model to leading order in 

To obtain the A contribution in these two models is not difficult. Label the 

nucleon or A state by {J = I; 5s Is}. In the (most naive) NRQM mN = mu, 

and it is only necessary to calculate F. With static states 

$?A= (;; ; ;jA:(O)~;; ; ;), 
and similarly, 

+=($; ; +;(o)I;; ; ;). (20) 
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When working to leading order in A, rn~ = mb and the same formulas hold for 

our analysis of the Skyrme model. 

The NRQM calculations are straightforward. In constructing the wave- func- 

tions color indices can be dropped because the axial current is diagonal in color. 

Consider, for example, the u quarks in a proton. They are in a state anti- 

symmetric in color, but symmetric in flavor and space, and therefore spin as 

well. Their state can be labeled simply as I%, m,)” where N. is the number of 

up quarks; Assume N is odd. The spin up proton NRQM wavefunction is 

The required A wavefunction is 

3 11 

I ) 
!y 

-. - - 
2' 2 2 NRQM 

=*~~~)(~+l+m~::) (22) 

. 

/F,m)m IT,; - m)d 

As usual, A:(O) = (+3~3)q”ort8. Then in the NRQM6 , 
NRQM 

1 
!cp 

p4 = ,=~tij(N~,m;~,~-m / ~~>“(2m- i)= F. (23) 

4 

Similarly, 

(24) 

xii 

~F=m=$~,(~,m;~,~-mi ii) 

. 
N+l N-l 1 
-, m; 

4 ---‘2-m 4 I > 
ga (2m-~)=-&J(N+~)(N-1) 
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Finally, in this model one finds 

or that the A completely saturates the sum rule. This wss known long ago for 

N = 3’ and one expects the result to hold for arbitrary N as well. However, 

it does provide an example where 9~ and F are O(N), and the A saturates the 

sum rule in leading order, (to all orders in fact). 

The Skyrme model as developed in ref.[ 1) can provide information about the 

leading N dependence of gA and F. In leading order the relevant quantity for 

the sum rule is E. By eqn.‘s (20) and (19), 

F 3(+; + +IA;(O) 1;; ; ;) 

; = i(;; ; ;IA;(O)If; i ;)’ P3) 

The ratio is only sensitive to the collective coordinate wavefunction; it is in a 

sense a group theoretic quantity. Applying a general result of Manohar* , 

; ~Sk~yrme= $&,, ; iNRQM= & . (27) 

This may be seen explicitly as follows. The collective coordinate wavefunctions 

are just those of the spherical top, if-- GO&, (A), where A is an SU(2) ma- 

trix collective coordinate. From ref.[l], the collective coordinate component of 

the operator A:(O) is proportional to Tr(r3Ar3At) a: Dtb(i), where A is 

the collective coordinate operator diagonal on IA). The matrix elements in the 

collective coordinates are given in terms of 3-j symbols. 

(5; mi mllD!,%~i) Ih; 4 mz),,I coord 

=(-)d-~~~~ jl 1 
>( -m{ 0 

(28) 

Evaluation of the relevant 3-j symbols gives the desired result, eqn(27). By 
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eqn.(27), the A saturates the sum rule in leading order in N. It seems likely that 

this holds in large-N QCD as well, although we have no proof of this. 

Phenomenologically, one may ask how well the Skyrme model reproduces the 

experimental result for the sum of the A and continuumcontributions in eqn.(l6), 

(equivalently, the continuum in eqn.(l)). Apparently, it does passably giving to 

leading order in N (from the A) the result LI (.61)2, while experimentally the 

result is = .5. If one then computes gA ’ indirectly from eqn.(l6) and this result, 

one gets a rather good value for gi E 1.36. Higher order corrections have not 

been systematically included here. The result (.Sl)* is not a purely leading order 

result but includes some higher order effects because the experimental values for 

mN and rn* have been used in calculating it. Also, explicitly higher order effects 

in the A plus continuum contribution have not been evaluated. If indeed the A 

plus continuum series behaves well here (the series sums to a value close to .36), 

it would be necessary apparently in a direct calculation of go to include the first 

two subleading terms before an accurate value could be obtained. 

The particular situation in the Skyrme model illustrates a rather general 

point. The issue is whether both of the two physical quantities gi and the A 

plus continuum contribution can be well-behaved as series in 7$ in the most 

naive sense, that is that the first term is reasonably close to the final result, the 

magnitude of each successive term is progressively smaller, and each successive 

partial sum is closer to the final result. Suppose that the sum of each series 

accurately reproduces the measured values. The two series are identical except 

for the O(1) terms which differ by 1. In absolute magnitude the larger of the 

0 (1) terms is minimized if the 0 (1) t erm of gi (A plus continuum) is +.5 (-.5). 

On the other hand, a reasonable first approximation to each series is about 1. 
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Then, the 0 (N) term of each series must be rather small and one of the second 

partial sums must move away from the final result. Therefore, it is not possible 

for both series to be well-behaved in the most naive sense, and either gi or the A 

plus continuumcontribution to the Adler-Weisberger sum rule wi!’ be somewhat 

problematic in any large-N expansion. 
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